Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effect of Split Injection on Soot and NOx Production in an Engine-Fed Combustion Chamber

1993-10-01
932655
This research focused on the effects of split injection on combustion in a diesel environment. It was done in a specially designed engine-fed combustion chamber (swirl ratio of 5) with full field optical access through a quartz window. The simulated engine combustion chamber used a special backwards spraying injector (105°). The electronically controlled injector could control the size and position of it's, two injections. Both injections were through the same nozzle and it produced very rapid injections (1.5 ms) with a maximum injection pressure of 130 MPa. Experimental data included: rate of injection, injector pressure, combustion chamber dumping (NO & NOx concentrations), flame temperature, KL factor (soot concentration) combustion pressure, and rate of pressure rise. Injection rates indicate that the UCORS injection system creates very rapid injections with the ability to produce controllable split injections.
Technical Paper

Emissions and Performance of a Small L-Head Utility Engine Fueled with Homogeneous Propane/Air and Propane/Air/Nitrogen Mixture

1993-09-01
932444
The objective of this study was to observe and attempt to understand the effects of equivalence ratio and simulated exhaust gas recirculation (EGR) on the exhaust emissions and performance of a L-head single cylinder utility engine. In order to isolate these effects and limit the confounding influences caused by poor fuel mixture preparation and/or vaporization produced by the carburetor/intake port combination, the engine was operated on a premixed propane/air mixture. To simulate the effects of EGR, a homogeneous mixture of propane, air, and nitrogen was used. Engine measurements were obtained at the operating conditions specified by the California Air Resources Board (CARB) Raw Gas Method Test Procedure. Measurements included exhaust emissions levels of HC, CO, and NOx, and engine pressure data.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

Intake and Cylinder Flow Modeling with a Dual-Valve Port

1993-03-01
930069
Intake port and cylinder flow have been modeled for a dual intake valve diesel engine. A block structured grid was used to represent the complex geometry of the intake port, valves, and cylinder. The calculations were made using a pre-release version of the KIVA-3 code developed at Los Alamos National Laboratories. Both steady flow-bench and unsteady intake calculations were made. In the flow bench configuration, the valves were stationary in a fully open position and pressure boundary conditions were implemented at the domain inlet and outlet. Detailed structure of the in-cylinder flow field set up by the intake flow was studied. Three dimensional particle trace streamlines reveal a complex flow structure that is not readily described by global parameters such as swirl or tumble. Streamlines constrained to lie in planes normal to the cylinder axis show dual vortical structures, which originated at the valves, merging into a single structure downstream.
Technical Paper

Design and Construction of a High-Bandwidth Hydrostatic Dynamometer

1993-03-01
930259
A hydrostatic dynamometer capable of accurately controlling the speed and torque of an engine has been designed and constructed. The thrust of this work is not only to build a better dynamometer, it is the first step in creating a system for laboratory simulation of the actual load environment of engines and powertrains. This paper presents the design, construction, and evaluation of a hydrostatic dynamometer. The evaluation includes speed and torque limits, and bandwidth of the dynamometer. Also, the dynamometer is compared with those in common use, and the feasibility of accurately reproducing the engine or powertrain load environments are assessed. This is the first phase of a development program; future research is discussed.
Technical Paper

An Investigation of Load Force and Dynamic Error Magnitude Using the Lumped Mass Connecting Rod Model

1993-03-01
930617
This paper investigates the dynamic errors between the commonly used two-lump mass connecting rod model and the actual connecting rod model for the internal combustion engine. Because of the errors between the actual rod inertia and this simplified two-lump mass model, incorrect engine dynamics and internal forces are often predicted. In this paper, the magnitudes of force differences related to errors of connecting rod inertia are presented for various engines at different engine operating speeds. A method to predict the maximum side force and its maximum deviation is presented. And the technique to minimize variability in connecting rod mass and moment of inertia, as well as minimizing errors in the lumped mass model commonly used in industry are also introduced to avoid incorrect engine dynamics and internal forces.
Technical Paper

Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1993-03-01
930924
An experimental investigation of the spectral characteristics of turbulent flow in a scale model of a high pressure diesel fuel injector nozzle hole has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of an injector nozzle using an Aerometrics Phase/Doppler Particle Analyzer (PDPA) in the velocity mode. Turbulence spectra were calculated from the velocity data using the Lomb-Scargle method. Injector hole length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Results were obtained for a steady flow average Reynolds number of 10,500, which is analogous to a fuel injection velocity of 320 m/s and a sac pressure of approximately 67 MPa (10,000 psi). Turbulence time frequency spectra were obtained for significant locations in each geometry, in order to determine how geometry affects the development of the turbulent spectra.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

The Effect of Split Injection on Fuel Distribution in an Engine-Fed Combustion Chamber

1993-03-01
930864
This research focused on the effects of split injection on fuel spray behavior in a diesel environment. It was done in a special designed engine-fed combustion chamber (swirl ratio of 5) with full field optical access through a quartz window. The simulated engine combustion chamber used a special backwards spraying injector (105°). The electronically controlled injector could control the size and position of it's two injections. Both injections were through the same nozzle and it produced very rapid injections (1.5 ms) with a maximum injection pressure of 130 MPa. Experimental data included: rate of injection, injector pressure, spray plume images, tip penetration, liquid and vapor fuel distributions, combustion pressure, and rate of pressure rise. From 105° forward scatter images, tip penetration was observed to be very rapid and reached a plateau at 25 mm.
Technical Paper

Internal Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1992-10-01
922308
An experimental investigation of turbulent flow patterns in a scale model of a high pressure diesel fuel injector nozzle has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of the injector nozzle using an Aerometrics Phase Doppler Particle Analyzer (PDPA) in the velocity mode. Length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Two steady flow average Reynolds numbers (10,500 and 13,300), analogous to fuel injection velocities and sac pressures of approximately 320 and 405 m/s and 67 and 107 MPa (10,000 and 16,000 psi), were investigated. The axial progression of mean and root mean square (rms) axial velocities was obtained for both sharp and rounded inlet conditions and varying L/D. The discharge coefficient was also calculated for each geometry.
Technical Paper

Improvements in 3-D Modeling of Diesel Engine Intake Flow and Combustion

1992-09-01
921627
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation and the intake flow process. Improved and/or new submodels which have been completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops.
Technical Paper

Image Analysis of Diesel Sprays

1992-09-01
921628
Time resolved measurements of non-evaporating, non-burning fuel sprays injected into a quiescent atmosphere were performed. The experimental parameters included ambient gas density, mass of fuel injected per stroke, pump speed, and nozzle diameter. High speed films of fuel sprays were obtained using a rapidly pulsed Cu-vapor laser in synchronization with a high frame rate film camera. The laser light intensity transmitted through the spray was recorded directly by the film camera. The information encoded on the film was subsequently digitized using a projector/CCD camera system. Finally, instantaneous ensemble averaged properties of droplets constituting the spray were estimated by quantitative analysis of the digitized transmission images. These measured properties included the Sauter mean diameter (SMD) averaged over the entire spray or over a given cross-section. In addition, the images yielded other spray parameters such as tip penetration, cone angle, and injection duration.
Technical Paper

Design of a Free-Piston Engine-Pump

1992-09-01
921740
Off-highway mining and construction equipment typically converts all the power output of the engine to hydraulic power, with this power then used to perform the earth-moving operations, and also to propel the vehicle. This equipment presents significant opportunities for a new type of powerplant designed to deliver hydraulic power directly. An alternative to the conventional engine driven pump is a free-piston engine-pump (FPEP). The FPEP incorporates the functions of both an internal combustion engine and a hydraulic pump into a single, less-complex unit. The design presented in this paper utilizes two double-ended, reciprocating, opposed pistons, with combustion at one end of each piston and pumping at the opposite end. The opposed piston layout provides balance and also facilitates uniflow scavenging through intake and exhaust ports in the combustion section of the engine. An important feature of this FPEP design is the rebound accumulator circuit.
Technical Paper

Modeling Combustion in Compression Ignition Homogeneous Charge Engines

1992-02-01
920512
The combustion mechanism in a Compression Ignition Homogeneous Charge (CIHC) engine was studied. Previous experiments done on a four-stroke CIHC engine were modeled using the KIVA-II code with modifications to the combustion, heat transfer, and crevice flow submodels. A laminar and turbulence characteristic time combustion model that has been used for spark-ignited engine studies was extended to allow predictions of ignition. The rate of conversion from one chemical species to another is modeled using a characteristic time which is the sum of a laminar (high temperature) chemistry time, an ignition (low temperature) chemistry time, and a turbulence mixing time. The ignition characteristic time was modeled using data from elementary initiation reactions and has the Arrhenius form. It was found to be possible to match all engine test cases reasonably well with one set of combustion model constants.
Technical Paper

Modeling Diesel Engine Spray Vaporization and Combustion

1992-02-01
920579
Diesel engine in-cylinder combustion processes have been studied using computational models with particular attention to spray development, vaporization, fuel/air mixture formation and combustion. A thermodynamic zero-dimensional cycle analysis program was used to determine initial conditions for the multidimensional calculations. A modified version of the time-dependent, three-dimensional computational fluid dynamics code KIVA-II was used for the computations, with a detailed treatment for the spray calculations and a simplified model for combustion. The calculations were used to obtain an understanding of the potential predictive capabilities of the models. It was found that there is a strong sensitivity of the results to numerical grid resolution. With proper grid resolution, the calculations were found to reproduce experimental data for non- vaporizing and vaporizing sprays. However, for vaporizing sprays with combustion, extremely fine grids are needed.
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

Lubrication Aspects of a Modified Hypocycloid Engine

1992-02-01
920380
The modified hypocycloid (MH) mechanism, which uses gears to produce straight line motion, has been proposed as an alternative to the slider-crank mechanism for internal combustion (IC) engines. Advantages of the MH mechanism over the slider-crank for an IC engine include the capability of perfect balancing with any number of cylinders and the absence of piston side loads. The elimination of piston side load has the potential for lower piston friction, reduced piston slap, and less susceptibility to cylinder liner cavitation. To evaluate the concept, an experimental single cylinder four-stroke engine which utilizes the MH mechanism is currently being built at the University of Wisconsin-Madison. The MH engine has an increased number of friction interfaces compared to a conventional slider-crank engine due to additional bearings and the gear meshes. Thus, the lubrication of these components is an important issue in total MH engine friction.
Technical Paper

Heat Transfer Measurements in a Motored Engine

1989-02-01
890319
A set of experiments has been performed on a motored four stroke engine measuring the gas phase thermal boundary layer profile adjacent to the cylinder head using speckle interferometry. Speckle interferometry is an optical technique which allows full field, line of sight averaged optical phase shift measurements. These optical phase shift measurements may be interpreted as local temperature values for planar or axisymmetric geometries with ideal gases. For this set of experiments, a small (20 mm diameter) portion of the cylinder head was raised 2 mm above the rest of the surface and used as a test surface. The experiments were performed at two engine speeds, 300 and 750 RPM and at low and high intake swirl levels. Interferograms were obtained at 10 crank angle degree intervals from 70° before top dead center of compression to 60° after top dead center of compression.
Technical Paper

Comparison of Unburned Fuel and Aldehyde Emissions from a Methanol-Fueled Stratified Charge and Homogeneous Charge Engine

1986-10-01
861543
This paper presents the results of an experimental program in which a Texaco L-163S engine was fueled with methanol and operated in its traditional stratified charge mode and then modified to run as a homogeneous charge spark ignited engine. The primary data taken were the aldehyde and unburned fuel emissions (UBF). These data were taken using a continuous time-averaging sampling probe at the exhaust tank and at the exhaust port and with a rotary time-resolving sampling valve located at the exhaust port. The data are for two loads, 138.1 kPa (20 psi) and 207.1 kPa (30 psi) BMEP and three speeds, 1000, 1400 and 1800 rpm. The data indicate that for both the stratified charge and the homogeneous charge modes of operation formaldehyde was the only aldehyde detected in the exhaust and it primarily originated in the cylinder.
X